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Abstract: In this paper, we propose a parsimonious reduced-rank linear discrim-

inant analysis model for high-dimensional sparse multi-class discriminant anal-

ysis. A sparse dimension reduction subspace is constructed to contain all the

necessary information for linear discriminant analysis. We show explicitly the

connections between our model and two well-studied models in the literature:

the principal fitted component model in sufficient dimension reduction and the

multivariate reduced-rank regression model. The likelihood-inspired efficient esti-

mator is then recast from a convex optimization perspective. A doubly penalized

convex optimization is proposed to unite sparsity and low-rankness in high di-

mensions, and is then solved efficiently by a three-operator splitting algorithm.

We establish the rank selection consistency and the classification error consis-

tency of proposed method when the number of variable grows very fast with the

sample size. The effectiveness of the proposed method is further demonstrated

by extensive simulation studies and facial recognition data sets.

Key words and phrases: Dimension reduction, discriminant analysis, linear dis-

criminant analysis, nuclear norm penalty, variable selection.



1. INTRODUCTION

1. Introduction

High-dimensional linear discriminant analysis (LDA) methods are widely

studied and applied (e.g.,Bickel and Levina 2004; Cai and Liu 2011, Shao

et al. 2011; Mai et al. 2012) We consider multi-category classification with

K ≥ 2 classes, where linear discriminant analysis can identify at most K−1

linearly independent discriminant directions. When the dimension of the

subspace spanned by all discriminant directions is less than K − 1, this is

known as the reduced-rank LDA problem (Hastie et al. 2009, Chapter 4.3.3).

There are two popular approaches to this problem. The first approach

includes methods such as penalized linear discriminant analysis (Witten

and Tibshirani 2011) and sparse optimal scoring (Clemmensen et al. 2011).

These methods are high-dimensional extensions of Fisher’s view of LDA

and optimal scoring formulation of LDA. Specifically, such methods implic-

itly handle the low-rankness by sequential estimation of sparse discriminant

directions. The second class of methods, such as Hao et al. (2015) and Niu

et al. (2018), rely on principal component analysis. The low-rankness is

achieved by selecting the first several principal directions as the discrim-

inant directions (Niu et al. 2018) or by rotation of the data (Hao et al.

2015). However, these methods do not impose sparsity on the original

predictors. In addition to these statistical approaches, reduced-rank LDA
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methods and algorithms are gaining substantial attention in engineering

applications (e.g., Ye and Li 2005), where a probabilistic explanation is

greatly desirable.

In this paper, we first introduce a model-based interpretation for the

reduced-rank LDA problem. The low-rankness is formally stated as a

unique low-dimensional subspace, whose maximum likelihood estimator mo-

tivates our re-parameterization of the target parameters, leading to the ef-

ficient convex formulation. We then solve a penalized quadratic convex

optimization by a three-splitter operator algorithm, which is guaranteed

to reach the global minimum. To gain further insights on reduced-rank

discriminant analysis, we discuss how low-rankness arises naturally in the

settings of ordinal classification (McCullagh 1980, da Costa et al. 2008,

2010, Qiao 2015) and response category combination (Price et al. 2019,

Wen and Koppelman 2001).

The model-based interpretation and the maximum likelihood estima-

tor of the low-dimensional subspace are connected to the principal fitted

components model (Cook and Forzani 2008) in sufficient dimension reduc-

tion and the reduced-rank regression (Anderson 1951, Izenman 1975, Sto-

ica and Viberg 1996) in multivariate linear model. By exploiting such a

connection, we can easily derive the maximum likelihood estimator of the
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low-dimensional subspace under the LDA model when the dimension of

predictor p is smaller than the sample size n. Given the true rank d, the

maximum likelihood estimator is obtained from the first d eigenvectors of

a symmetric p × p matrix with rank at most (K − 1). Based on such an

observation, we augment the low-dimensional subspace parameter into an

overparameterized and rank-deficient matrix of dimension p×K. Without

pre-specifying the rank, we estimate this rank deficient matrix parameter

in high dimensions via nuclear norm penalization.

Convex formulation and convex relaxation of classical multivariate anal-

ysis and dimension reduction methods prevail in high-dimensional settings.

Our approach is very different from the convex relaxation of sparse princi-

pal component analysis (Vu et al. 2013), sparse canonical correlation anal-

ysis (Gao et al. 2017), or sparse sliced inverse regression (Tan et al. 2018;

Tan et al. 2020). In these convex relaxation approaches, the rank or di-

mensionality is pre-specified and incorporated into the constraints of opti-

mization. Then the optimization is over p× p symmetric matrices subject

to constraints (e.g. the parameter space of optimization would include pro-

jection matrices onto d-dimensional subspaces). Unlike these approaches

that augment the d-dimensional subspace as p × p dimensional matrices,

our approach is much more direct. Instead of optimizing over subspaces,
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orthogonal basis matrices, or projection matrices, we directly optimize over

an unconstrained p×K dimensional matrix parameter. This leads to much

cheaper computation that scales better with large p.

Our approach is also an extension of the multi-class sparse discriminant

analysis method by Mai et al. (2019), which does not account for the po-

tential low-rankness and is thus less effective when the number of classes

is big. Importantly, although our quadratic objective function is similar to

the one in Mai et al. (2019), the new maximum likelihood and least squares

estimation naturally leads to different weights for different discriminant di-

rection that is not accounted for in Mai et al. (2019). Moreover, the doubly

penalized estimation in our model is more challenging and requires a new

algorithm. Our unified approach of deriving the quadratic objective func-

tion also extends the scope of multi-class sparse discriminant analysis from

the one-versus-all parameterization to one-versus-one parameterization.

We adopt the following notations throughout the paper. For a vector

v = (v1, . . . , vp)
> ∈ Rp, we define the Lq-norm as ‖v‖q = (

∑p
j=1 v

q
j )

1/q for

1 ≤ q < ∞. For a matrix A = (aij) ∈ Rp×q, let σ1 ≥ . . . ≥ σmin{p,q}

denote its singular values, define the L2,1 norm and the nuclear norm as

‖A‖2,1 =
∑p

i=1(
∑q

j=1 a
2
ij)

1/2 and ‖A‖? =
∑min{p,q}

i=1 σi respectively. The span

of A, denoted as span(A) or SA, is the subspace spanned by the column



2. REDUCED-RANK LINEAR DISCRIMINANT ANALYSIS

vectors of A. Let β ∈ Rp×r be the orthonormal basis of the subspace

S ⊆ Rp, i.e., β>β = Ir, we use PS ≡ Pβ = ββ> to denote the projection

matrix onto the subspace S.

2. Reduced-rank linear discriminant analysis

2.1 Model-based interpretation

We consider the multi-class classification problem for the response Y ∈

{1, . . . , K} and the predictor X ∈ Rp. In linear discriminant analysis,

within each class k, the predictor is assumed to have mean µk ∈ Rp and the

common non-singular covariance matrix Σ ∈ Rp×p. Let πk = Pr(Y = k)

and µ ≡ E(X) =
∑K

k=1 πkµk. The Bayes’ rule, φ(X) : Rp 7→ {1, . . . , K}, is

the optimal classification rule in population and has the following form if

we assume that X | Y is normally distributed:

φ(X) = argmax
k=1,...,K

{(
X − µk + µ

2

)>
Σ−1(µk − µ) + log πk

}
. (2.1)

From (2.1), it is clear that the K directions Σ−1(µk−µ), k = 1, . . . , K, pre-

serve all the information of X relevant to classification. These K directions

are not linearly independent because
∑

k πk(µk − µ) = 0. In this paper, we

explicitly state the low-rankness condition as follows.

Low-rankness condition. Let S ⊆ Rp be the subspace spanned by the
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K discriminant directions Σ−1(µk − µ), k = 1, . . . , K, then its dimension

dim(S) = d < K − 1.

The reduced-rank linear discriminant analysis model is then formally

presented as,

Pr(Y = k) = πk > 0, X | (Y = k) ∼ N(µk,Σ),

µk = µ+ Σβηk, k = 1, . . . , K,

(2.2)

where β ∈ Rp×d is a basis matrix of the subspace S in the low-rankness

condition, i.e., S = Sβ, and η = (η1, . . . , ηK) ∈ Rd×K is the corresponding

coordinates of the K discriminant directions Σ−1(µk − µ).

Under (2.2), the Bayes’ rule becomes

φ(X) = argmax
k=1,...,K

{(
X − µk + µ

2

)>
βηk + log πk

}
, (2.3)

which implies that given any observation x ∈ Rp, Pr(Y = k | X = x) =

Pr(Y = k | β>X = β>x) for k = 1, . . . , K. In other words, the reduction of

data from X ∈ Rp to β>X ∈ Rd is without any loss of relevant information

for classification under model (2.2). If β is known, we can then replace X

with β>X and apply the classical linear discriminant analysis.

Remark 1. The parameters β and η are not identifiable since the decom-

position βη can be replaced by β̃η̃, where β̃ = βO and η̃ = O>η for any

orthogonal matrix O ∈ Rd×d. Nevertheless, the subspace S = span(β) is
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identifiable and is the key parameter of interest in model (2.2). In this

paper, the subspace S is called the discriminant subspace, and its basis β

is called the discriminant basis. The dimensionality dim(S) = d is called

the discriminant rank. Any vector in S is called a discriminant direction.

The reduced-rank LDA model is closely connected to the principal fitted

component model (Cook and Forzani 2008) in sufficient dimension reduction

and the multivariate reduced-rank regression (Izenman 1975). To see this,

we rewrite model (2.2) as the following equivalent form,

X = µ+ ΣβηξY + ε, ε ∼ N(0,Σ), (2.4)

where ξY ∈ RK is the indicator functions of Y : If Y = k, then the kth

element of ξY is one and all the other elements are zero. There is also an

intrinsic constraint that ΣβηE(ξY ) = 0 in (2.4). This model is exactly the

principal fitted component model, when the fitting functions are chosen as

the indicator functions of Y . Hence, our discriminant subspace S is also

the central subspace in sufficient dimension reduction (Cook 1998). If we

treat X as response and ξY as predictor, then (2.4) becomes the multivariate

reduced-rank regression model (Izenman 1975) and Σβη ∈ Rp×K is the rank-

d regression coefficient matrix. Such connections enable us to easily obtain

the maximum likelihood estimator for model (2.2), and further motivates

our efficient convex formulation.
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2.2 Efficient convex formulation for high-dimensional estimation

As discussed in Remark 1, the discriminant basis β is not identifiable but

the discriminant subspace S is identifiable. However, optimization over sub-

space is non-convex and expensive in general. To facilitate high-dimensional

computation, we introduce an alternative target object B ∈ Rp×K that is

identifiable and replaces β and S in high-dimensional estimation.

We first consider the maximum likelihood estimator of S, which is sum-

marized in the following lemma. Let Σ̂ = (1/n)
∑K

k=1

∑n
i=1 I(Yi = k)(Xi −

X̄k)(Xi − X̄k)
> denote the within-class covariance matrix, where I(Yi = k)

takes value 1 if Yi = k and 0 otherwise, and Σ̂b =
∑K

k=1(nk/n)(X̄k−X̄)(X̄k−

X̄)> denote the between-class covariance matrix, where X̄k is the sample

mean of X in class k, X̄ is the sample mean of X, n is the overall sample

size and nk is the sample size for class k.

Lemma 1. Under model (2.2), the maximum likelihood estimator of S =

span(β) is Σ̂−1/2span(v̂1, . . . , v̂d), where v̂i is the ith eigenvector of Σ̂−1/2Σ̂bΣ̂
−1/2.

Based on (2.4), we can easily verify the results of Lemma 1 from pre-

vious works (Cook and Forzani 2008, Stoica and Viberg 1996). Lemma 1

provides solutions to low-dimensional reduced-rank LDA problem.

Let Û , U ∈ Rp×K , U = {π1/2
1 (µ1 − µ), . . . , π

1/2
K (µK − µ)} and Û is
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its sample estimator. Then Σ̂b can be rewritten as Σ̂b = Û Û>; and the

maximum likelihood estimator Ŝ = Σ̂−1/2span(v̂1, . . . , v̂d) ⊆ span(Σ̂−1Û),

while in the population B ≡ Σ−1U spans the same subspace as S. As such,

we target onB for the estimation of subspace S. Since rank(B) = d ≤ K−1,

B is overparameterized and is to be estimated with rank regularization.

Following model (2.2), we can write BW = βη, where the matrix

W = diag(π
−1/2
1 , . . . , π

−1/2
K ) ∈ RK×K . Consequently, the inverse regression

model (2.4) can be rewritten in terms of B as follows,

X = µ+ ΣBWξY + ε, ε ∼ N(0,Σ), (2.5)

where BW = βη. To avoid ambiguity of the reference to β due to its non-

identifiability, we henceforth refer to β as the matrix composed of top-d left

singular vectors of B.

Inspired by the inverse regression reformulation (2.5) of the reduced-

rank LDA model, a natural way to estimate B is the least squares estimation

by solving the following least squares problem,

argmin
B∈Rp×K

n∑
i=1

‖(Xi − X̄)− Σ̂BŴξYi‖22, (2.6)

where µ, W and Σ in the inverse regression model (2.5) are replaced by

their sample estimators. Again, since B is identifiable, itself is the target

of estimation and the rank constraint on B in (2.5) is yet to be imposed in
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the least squares formulation (2.6). An equivalent form of (2.6) is given in

the following Lemma.

Lemma 2. Assume that Σ̂ is non-singular, the least squares problem in (2.6)

is equivalent to

argmin
B∈Rp×K

1

2
tr(B>Σ̂B)− tr(B>Û). (2.7)

Based on Lemma 2, the least squares estimator of B is Σ̂−1Û , which is

exactly the plug-in estimator of B defined previously. In high dimensions

where p � n, Σ̂ is no longer invertible and the least squares estimator is

not well-defined. However, the convex formulation (2.7), to be combined

with penalization techniques, will provide a new way for estimating the

discriminant subspace in high-dimensional setting.

Remark 2. Our convex formulation of (2.7) is similar to the optimization

in Mai et al. (2019), but is motivated from an efficient likelihood-based per-

spective. If we replace U = {π1/2
1 (µ1−µ), . . . , π

1/2
K (µK−µ)} ∈ Rp×K with an

unweighted one-versus-others version {(µ2−µ1), . . . , (µK−µ1)} ∈ Rp×(K−1),

then (2.7) reproduces the objective function in Mai et al. (2019), which lacks

likelihood or least squares interpretation. Moreover, because of our rank

regularization introduced later, our method allows more flexible modifica-

tions than Mai et al. (2019). For example, we can also use one-versus-one
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parameterization to replace Û with the p×K(K−1)/2 dimensional pairwise

mean difference matrix.

In high-dimensional statistics, the sparsity assumption is commonly

imposed such that only a small number of variables are active in the model.

Based on Bayes’ rule (2.1), the j-th variable Xj makes no contribution to

the classification if and only if bj1 = · · · = bjK = 0, where bjk is the (j, k)-th

element in matrix B. Let A denote the index set of all the active variables,

then A = {j | there exists k such that bjk 6= 0}, and the sparsity level is

denoted as s = |A|.

For simultaneous variable selection and rank shrinkage, we propose the

following doubly penalized convex optimization,

B̂ = argmin
B∈Rp×K

1

2
tr(B>Σ̂B)− tr(B>Û) + λ1||B||2,1 + λ2||B||?, (2.8)

where λ1 > 0 and λ2 > 0 are tuning parameters. The L2,1 norm penalty

‖B‖2,1 (Yuan and Lin 2006) and the nuclear norm penalty ||B||? have been

ubiquitously applied in many regularized regression or classification prob-

lems (see Roth and Fischer 2008; Meier, Van De Geer and Bühlmann 2008;

Yuan et al. 2007; Zhou and Li 2014). After we obtain B̂ from (2.8), the

estimated discriminant rank d̂ directly follows from Algorithm 1 to be in-

troduced in the next section. Then by singular value decomposition of B̂,
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the discriminant basis estimator is defined as β̂ = (β̂1, . . . , β̂d̂), where β̂k is

the left singular vector of B̂ corresponding to the kth largest singular value.

And the active set can be estimated as Â = {j | there exists k such that b̂jk 6=

0}. Once the estimated discriminant basis β̂ is obtained, the classification

is performed on the reduced d̂-dimensional data β̂>X, i.e. (2.3).

2.3 The algorithm

One common way to solve the doubly penalized convex optimization prob-

lem (2.8) is to impose an equality constraint and implement the alternating

direction method of multipliers algorithm (see, Boyd, Parikh and Chu 2011)

by iteratively solving two simpler convex optimization problems, each with

only one penalty term. However, such an algorithm introduces an aug-

mented term from the equality constraint and an extra tuning parameter is

involved, which makes the tuning procedure more tricky. Instead, we adopt

a simpler and more efficient three-operator splitting scheme recently pro-

posed by Davis and Yin (2017). In its application to problem (2.8), the three

operators are Σ̂B−Û , λ1∂‖B‖2,1 and λ2∂‖B‖? respectively, where ∂ denotes

the subdifferentials. From the implementation of the three-operator split-

ting algorithm, it can be seen that the algorithm introduces no additional

tuning parameters, has easy-to-implement iteration, and is more efficient
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than our alternating direction method of multipliers algorithm that we also

provided and compared to in the Supplementary Materials.

Following Davis and Yin (2017), the iteration of solving (2.8) is imple-

mented as follows:

(1) Proximal mapping of L2,1 norm:

B(t) = argmin
B∈Rp×K

1

2
‖B − A(t)‖2F + γλ1‖B‖2,1 (2.9)

(2) Proximal mapping of nuclear norm:

C(t) = argmin
C∈Rp×K

1

2
‖C − {2B(t) − A(t) − γ(Σ̂B(t) − Û)}‖2F + γλ2‖C‖?.

(2.10)

(3) Update A(t+1): A(t+1) = A(t) + αt(C
(t) −B(t)).

As suggested in Davis and Yin (2017), for simplicity, we fix the constant

αt = 1 for t ≥ 0, and γ = 1.99/λmax(Σ̂), where λmax(Σ̂) is the largest

eigenvalue of Σ̂. Interested readers are referred to Davis and Yin (2017) for

more details on these constants. The updates of B(t) and C(t) in (2.9) and

(2.10) are simply the proximal mapping of L2,1-norm and nuclear norm,

whose solutions are commonly known in many penalization problems (Mai,

Yang and Zou 2019, Zhou and Li 2014). We summarize the explicit forms

of B(t) and C(t) in the following lemma. Define the positive part function

x+ = max{0, x} for any x ∈ R.
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Lemma 3. Let (a
(t)
i )> denote the ith row vector of A(t), then the solution

B(t) in (2.9) is ((b
(t)
1 )>, . . . , (b

(t)
p )>)> where b

(t)
i = a

(t)
i (1−γλ1/‖a(t)i ‖2)+, i =

1, . . . , p. Let M (t) denote 2B(t)−A(t)− γ(Σ̂B(t)− Û), and
∑min{p,K}

i=1 σiuiv
>
i

denote the singular value decomposition of M (t), the solution C(t) in (2.10)

is C(t) =
∑min{p,K}

i=1 (σi − γλ2)+uiv>i .

After enough iterations, the sequences (B(t))t≥0 and (C(t))t≥0 converge

weakly to the stationary point of the objective function (Davis and Yin

2017). In our problem (2.8), which is convex, the stationary point is hence

the global minimizer. Specifically, we have the following results.

Lemma 4. For problem (2.8), by fixing γ < 2/λmax(Σ̂) and αt = 1 for

t ≥ 0, as t→∞, both (B(t))t≥0 and (C(t))t≥0 converge weakly to the global

minimizer of problem (2.8).

We summarize our estimation procedure in Algorithm 1. The algorithm

requires the input of the sample matrices Σ̂ and Û , the tuning parame-

ters λ1 and λ2 and the thresholding value δ. The thresholding value δ is

used in rank selection, which is set as 10−3 by default. Then we initial-

ize the matrix A(0) = 0 and update B(t), C(t) and A(t) iteratively, which

can be solved efficiently by Lemma 3. The update of B(t) in (2.9) intro-

duces the group-structure sparsity and the update of C(t) in (2.10) intro-

duces the low-rank structure. In iterations, we use the relative change
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Algorithm 1 LSLDA Algorithm

Input: Σ̂, Û , the tuning parameters λ1, λ2 and the thresholding value δ.

Initialization: A(0) = 0.

repeat

Step 1: Update B(t): the ith row vector of B(t) is (b
(t)
i )> = (a

(t)
i )>(1−

γλ1/‖a(t)i ‖2)+, where (a
(t)
i )> is the ith row vector of A(t).

Step 2: Update C(t): calculate M (t) = 2B(t) − A(t) − γ(Σ̂B(t) − Û),

then C(t) =
∑min{p,K}

i=1 (σi − γλ2)+uiv>i , where σi, ui and vi are defined

in Lemma 3.

Step 3: Update A(t+1): A(t+1) = A(t) + αt(C
(t) −B(t)).

until some stopping criterion is met.

Output: Let B̂ be the solution at termination. The discriminant rank is

estimated by d̂ =
∑min{p,K}

i=1 I(σi(B̂) ≥ δ), where σi(B̂) is the ith singular

value of B̂. Let β̂k be the left singular vector of B̂ corresponding to the kth

largest singular value. The estimated discriminant basis β̂ = (β̂1, . . . , β̂d̂).

‖B(t) − C(t)‖F/(1 + ‖A(t+1)‖F ) ≤ δ as the convergence criterion, where the

tolerance is set as δ, the same as the thresholding value. We count the num-

ber of non-zero singular values of B̂ after thresholding with value δ as the

estimated rank. Finally, the top-d̂ left singular vectors of B̂ is returned as

the discriminant basis estimator β̂. We select the tuning parameters λ1 and

λ2 by cross-validation. More details of the tuning procedure is contained in

the Supplementary Materials.
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3. Other applications of reduced-rank LDA model

When the number of classes K is large, low-rankness can be a useful approx-

imation. The low-rankness condition may also appear naturally in other

situations such as ordinal response and indistinguishable classification.

The first application is the ordinal classification. Many works have been

devoted to solving the ordinal classification problems with accounting for

the order relation.In particular, the unimodality condition in the following

is well-justified in ordinal response (e.g., da Costa et al. 2008, 2010).

Unimodality condition. The ordinal response Y ∈ {1, . . . , K}. For any

x ∈ Rp, Pr(Y = k | X = x) > Pr(Y = k+ 1 | X = x) for k ≥ mode(Y ) and

Pr(Y = k | X = x) > Pr(Y = k − 1 | X = x) for k ≤ mode(Y ).

The unimodality condition arises naturally in many real applications.

We take the employee selection dataset from da Costa, Alonso and Cardoso

(2008) as an example. Each observation in the dataset consists of four

covariates X = (X1, X2, X3, X4) from psychometric tests and an ordered

response Y ∈ {1, . . . , 9} representing the overall score of the candidate.

Intuitively, for a given covariate, if the score is known most likely to be 6,

there is no reason to believe that the score is more likely to be 4 than to

be 5. To demonstrate the reasoning, we plot the sample distributions of Y
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Figure 1: (Left) the sample distribution plot of Y | (X3 = 6) in the employee

selection dataset; (Right) the sample distribution plot of Y | (X4 = 5) in

the employee selection dataset.

given X3 = 6 and X4 = 5 in Fig. 1. From these two plots, we observe the

unimodal distributions with modes 5 and 6 respectively.

Now we consider the ordinal classification under the linear discriminant

analysis model, i.e., X | (Y = k) ∼ N(µk,Σ). When the unimodality

condition holds, the following lemma shows that there exists an intrinsic

low-rank structure in the model.

Lemma 5. For Y ∈ {1, . . . , K} and X | (Y = k) ∼ N(µk,Σ), under the

unimodality condition, let k′ denote the smallest k such that µk+1−µk 6= 0,

assume that k′ exists and

log(πk+1/πk) < (µk+1 − µk)>Σ−1(µk+1 − µk)/2, k = 1, . . . , K − 1, (3.1)
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then µk+1 − µk = αk(µk′+1 − µk′), where constants αk ≥ 0 for k ≤ K − 1.

Consequently, S = span{Σ−1(µk′+1 − µk′)} and d = 1.

The assumption that k′ exists rules out the trivial case that S = {0},

and (3.1) guarantees that the priors do not dominate the classification rule.

By formulating the LDA model into the multinomial logistic regression

model, one can show that Σ−1(µk+1−µk) is the normal vector of the splitting

hyperplane separating the consecutive classes k and k + 1. By Lemma 5,

all the splitting hyperplanes are parallel to each other. This observation

complies with the parallel splitting hyperplane assumption, which is widely

adopted in ordinal classification methods under the support vector machines

framework (Shashua and Levin 2002, Wang et al. 2016).

The following lemma provides an intuitive example of unimodal Y | X.

Lemma 6. For Y ∈ {1, . . . , K} and X | (Y = k) ∼ N(µk,Σ), assume that

Pr(Y = k) = 1/K for k = 1, . . . , K and µk − µk−1 = · · · = µ2 − µ1 6= 0, the

conditional distribution Y | (X = x) is unimodal for any x ∈ Rp.

The second application is the response category combination problems

arising in marketing and political polling, where the product preference of

customers or the political stand of voters sometimes are not distinct enough

to be easily differentiated by statistical models. Price et al. (2019) stud-

ied the response category combination problems by adopting the fused lasso
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penalty under the multinomial logistic regression model. The indistinguish-

able classes condition applied is stated as follows:

Indistinguishable classes condition. The response Y takes value in

{1, . . . , K}. Assume that there exist some k, j ∈ {1, . . . , K} such that

Pr(Y = j | X = x) = Pr(Y = k | X = x) for any x ∈ Rp.

Under indistinguishable classes condition, there is no clear guidance

on how to make the prediction among the classes with the same posterior

probability. Therefore, the indistinguishable categories are suggested to be

combined. We consider the indistinguishable classes condition under the

LDA model, which naturally brings the low-rank structure to discriminant

subspace.The following lemma illustrate that our method is suitable for

problems with intrinsically (but unknown) indistinguishable classes.

Lemma 7. For Y ∈ {1, . . . , K} and X | (Y = k) ∼ N(µk,Σ), under indis-

tinguishable classes condition, the discriminant rank d < K − 1.

4. Theoretical properties

We establish both the non-asymptotic and the asymptotic results for the

rank determination, the subspace parameter estimation, and the classifica-

tion error. For a new observation (X?, Y ?), let R denote the Bayes error
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Pr(φ(X?) 6= Y ?), where φ(·) is the Bayes rule (2.1), and conditioning on

the training data, let Rn denote the empirical classification error from our

estimator Pr(φ̂(X?) 6= Y ? | φ̂), where φ̂(·) is the prediction by our method

based on the n training samples. Recall that β ∈ Rp×d and β̂ ∈ Rp×d̂ are

composed of the top-d left singular vectors of B and the top-d̂ left singular

vectors of B̂, respectively. We consider the following subspace distance,

which is bounded between 0 and 1 if d̂ = d,

D(Sβ,Sβ̂) = D(β, β̂) = (2d)−1/2‖Pβ − Pβ̂‖F . (4.1)

We consider the following three mild assumptions of bounded eigenval-

ues, bounded prior probabilities, and separable classes, respectively.

(A1) There exists constant M > 0 such that M ≥ ϕ1(Σ) ≥ · · · ≥ ϕp(Σ) ≥

1/M > 0, where ϕk(Σ) is the kth largest eigenvalue of Σ.

(A2) There exists constant T > 0 such that 1/(TK) ≤ πk ≤ T/K for all k.

(A3) There exists constant Q > 0 such that 1/Q ≤ (µk − µj)
>Σ−1(µk −

µj) ≤ Q for all k 6= j.

Assumption (A1) is a commonly used assumption for high-dimensional

estimation (e.g., Cai et al. 2010). Assumption (A2) implies that the class

size πk is bounded away from 0 and 1. Assumption (A3) guarantees that

the classes are separable in finite Mahalanobis distance.
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We present the non-asymptotic results in the following theorem. Let

σmin denote the smallest non-zero singular value of B, ϕmin ≡ ϕp(Σ) and

τ = max{‖B‖2,1 + ‖B‖?, 2K1/2}. For ease of presentation, we assume that

σmin, ϕmin, d and K are fixed. Then τ can be interpreted as the sparsity

level of B because the dominating term in τ would be the L2,1 norm as

p goes to infinity. As p diverges with n, the sparsity level is allowed to

diverge with p. Thus, we allow τ to diverge with n in our theoretical study.

For notational simplicity, we use C and C ′ to denote some generic positive

constants that could vary from line to line.

Theorem 1. Under model (2.2) and Assumptions (A1)–(A3), for any ε

such that 0 < ε ≤ Cτ−2, and λ1, λ2, δ satisfying 5ετ < λ1 ≤ 6ετ , 0 <

λ2 ≤ λ1 and (22ε/ϕmin)1/2τ < δ ≤ 2(22ε/ϕmin)1/2τ , with probability at

least 1 − C ′p2 exp(−Cnε2) we have (i) d̂ = d; (ii) D2(β, β̂) ≤ C ′ετ 2; (iii)

|Rn −R| ≤ C ′(ετ 2)1/3, for some constants C,C ′ > 0.

With the proper selections of the thresholding value δ and the tuning

parameters λ1 and λ2, Theorem 1 shows that with high probability the

discriminant rank d and the subspace Sβ are estimated accurately, and the

classification error is close to Bayes error rate. If we further assume that

log p = o(nτ−4), by letting n→∞, we obtain the asymptotic results.
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Corollary 1. Under the same conditions as in Theorem 1, and log p =

o(nτ−4), for λ1, λ2 and δ satisfying 5C1τ(log p/n)1/2 < λ1 ≤ 6C1τ(log p/n)1/2,

0 < λ2 ≤ λ1 and C2τ(log p/n)1/4 < δ ≤ 2C2τ(log p/n)1/4 for some positive

constants C1 and C2, as n, p → ∞, we have (i) Pr(d̂ = d) → 1; (ii)

D(β, β̂)→ 0 in probability; (iii) |Rn −R| → 0 in probability.

Corollary 1 shows that the rank determination, the subspace estimation

and the Bayes’ classification error are consistent as n, p → ∞, where p is

allowed to grow with n at an exponential rate.

5. Simulations

To demonstrate the effectiveness of our proposed LSLDA, we conduct sim-

ulations from the reduced-rank LDA model (2.2) under high-dimensional

sparse settings. In models (M1) and (M2), we vary the predictor correla-

tion from mild and strong. In model (M3), we have unbalanced classes. In

models (M4) and (M5), K is relatively large, where (M5) is near full-rank

d = K − 2. In model (M6), we construct the unimodal distribution of

Y | X according to Lemma 6. In model (M7), we concur the indistinguish-

able classes condition, where the posterior probability of classes 2, 3 and 4

are the same. Finally, in model (M8), we vary the parameters s, p, n,K one

at a time to illustrate a wide range of settings.
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We set nk = 30, s = 10, and p = 3000 unless otherwise specified.

Let n denote the total training sample size. For all models, we generate a

separate validation set of size n for parameter tuning and a test set of size

5n for model evaluation. We set Σ as a block-diagonal matrix of blocks Σ̃

and I2500), where Σ̃ ∈ R500×500 is positive-definite. Recall that X | (Y =

k) ∼ N(µk,Σ) and S = Σ−1span(µ2 − µ1, . . . , µK − µ1). We fix µ1 = 0

and define θk = Σ−1µk+1 for k = 1, . . . , K − 1. Then, we generate the

discriminant basis β ∈ Rp×d by taking the top-d left singular vectors of

θ = (θ1, . . . , θK−1) ∈ Rp×(K−1). For a matrix A = (aij) ∈ Rp×p, we call it

has the AR(r, p) structure if aij = r|i−j| for i, j = 1, . . . , p, and the CS(r, p)

structure if aii = 1 for i = 1, . . . , p and aij = r for i 6= j. For each model,

the number of classes K, the vectors θk, the matrix Σ̃ and the discriminant

rank d, are listed as follows, where θkj denotes the j-th element of θk. The

vectors θk in each model are designed to keep the Bayes error less than 20%.

(M1) (Mild correlation)K = 4, d = 2, θ1i takes the value 0.8 for i = 1, . . . , 5

and 0 otherwise, θ2i takes value 0.8 for i = 6, . . . , 10 and 0 otherwise,

and θ3 = θ1 + θ2. The matrix Σ̃ = AR(0.5, 500).

(M2) (Strong correlation) Same as (M1) except θ3 = 1.5θ1 + 1.5θ2 and

Σ̃ = I10 ⊗ CS(0.3, 50).
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(M3) (Unbalanced data) Same as (M2), except that the class sizes (in the

training set) are now 10, 10, 50 and 50.

(M4) (Large K) K = 7, d = 2, θ1,2i−1 = 2 and θ2,2i = −4 for i = 1, . . . , 5.

For k = 3, . . . , K − 1, θk = (k/2− 1)(θ1 + θ2). And Σ̃ = AR(0.5, 500).

(M5) (Near full-rank basis) K = 7, d = 5, θki takes the value 2 for i =

2k − 1, 2k and k = 1, . . . , 5, and 0 otherwise, and θ6 = 0.5
∑5

k=1 θk.

And Σ̃ = AR(0.5, 500).

(M6) (Unimodality) K = 4, d = 1, θ2 = 2θ1, θ3 = 3θ1, where θ1i takes

the value 1 for i = 1, . . . , 5, the value −1 for i = 6, . . . , 10, and 0

otherwise. And Σ̃ = I10 ⊗ CS(0.3, 50).

(M7) (Indistinguishable classes) K = 4, d = 1, θ1 = θ2 = θ3, where θ1i

takes the value 1 for i = 1, . . . , 5, the value −1 for i = 6, . . . , 10, and

0 otherwise. And Σ̃ = I10 ⊗ CS(0.3, 50).

In each model setting, we compare our LSLDA method with several

competitors, including the supervised PCA-based LDA (SPCALDA; Niu

et al. 2018), the multi-class sparse discriminant analysis (MSDA; Mai et al.

2019), the sparse optimal scoring (SOS; Clemmensen et al. 2011), the pe-

nalized LDA (PLDA; Witten and Tibshirani 2011) and the penalized multi-

nomial logistic regression model (Logistic, Friedman et al. 2010). The
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Table 1: The means (and the standard errors) of the classification error (%), the

subspace distance D, the TPR (%) and the FPR (%) on simulated data generated from

Models (M1)–(M6). The results are based on 200 replicates. The standard errors for

TPR and FPR are all less than 3.5%, and are thus omitted.

Method Err(%) D TPR(%) FPR(%) Err(%) D TPR(%) FPR(%)

Model (M1) Model (M2)

Bayes 17.4(0.1) – – – 14.2(0.1) – – –

LSLDA 18.9(0.1) 0.321(0.538) 99.9 0.8 16.4(0.2) 0.379(0.975) 99.7 0.6

PP 56.8(0.3) 1.121(0.035) 100.0 100.0 58.7(0.4) 1.170(0.008) 100.0 100.0

SPCALDA 48.2(0.2) 1.296(3.406) 100.0 100.0 33.6(0.1) 1.411(3.328) 100.0 100.0

MSDA 22.4(0.2) 0.809(0.453) 77.5 0.1 19.9(0.2) 0.815(0.442) 78.8 0.2

SOS(q = K − 1) 24.3(0.2) 0.656(0.474) 97.3 0.5 35.4(0.2) 0.981(0.261) 66.3 0.8

SOS(q = d) 19.7(0.1) 0.443(0.722) 97.0 0.4 33.2(0.2) 0.843(0.309) 70.5 0.5

PLDA(q = K − 1) 49.2(0.2) 1.056(0.056) 100.0 100.0 32.3(0.1) 1.055(0.424) 100.0 97.0

PLDA(q = d) 48.8(0.4) 0.931(0.065) 100.0 100.0 33.9(0.2) 0.932(0.331) 99.7 95.5

Logistic 22.1(0.2) 0.799(0.404) 82.8 0.3 24.7(0.2) 0.877(0.428) 74.2 0.3

Model (M3) Model (M4)

Bayes 8.6(0.1) – – – 3.2(0.1) – – –

LSLDA 10.8(0.2) 0.525(1.415) 98.9 0.6 9.0(0.3) 0.698(1.604) 88.0 2.2

PP 41.6(0.4) 1.168(0.008) 100.0 100.0 45.0(0.4) 1.315(0.030) 100.0 100.0

SPCALDA 25.0(0.7) 0.857(0.646) 100.0 100.0 28.0(0.3) 1.544(7.625) 100.0 100.0

MSDA 13.3(0.1) 0.872(0.448) 67.8 0.2 12.3(0.4) 1.207(0.386) 57.2 0.8

SOS(q = K − 1) 19.5(0.1) 0.978(0.273) 64.7 0.8 12.2(0.1) 1.189(0.038) 70.2 1.1

SOS(q = d) 18.9(0.2) 0.839(0.322) 69.5 0.5 8.2(0.1) 0.649(0.082) 69.2 0.3

PLDA(q = K − 1) 17.6(0.1) 1.059(0.336) 100.0 98.0 18.7(0.2) 0.536(0.220) 89.4 0.0

PLDA(q = d) 19.6(0.6) 0.939(0.216) 100.0 98.0 18.7(0.2) 0.536(0.220) 89.4 0.0

Logistic 46.8(1.3) 0.977(0.134) 22.1 0.6 27.4(0.2) 1.241(0.386) 74.0 0.5

Model (M5) Model (M6)

Bayes 10.1(0.1) – – – 13.9(0.1) – – –

LSLDA 11.6(0.1) 0.235(0.298) 100.0 0.2 15.2(0.1) 0.219(1.461) 100.0 0.7

PP 60.0(0.2) 0.999(0.019) 100.0 100.0 61.9(0.3) 1.446(0.030) 100.0 100.0

SPCALDA 54.7(0.2) 1.179(1.484) 100.0 100.0 61.1(0.2) 2.269(4.379) 100.0 100.0

MSDA 13.0(0.1) 0.496(0.457) 96.1 0.1 18.4(0.2) 1.059(0.209) 98.8 0.2

SOS(q = K − 1) 14.9(0.1) 0.530(0.420) 100.0 0.9 25.0(0.2) 1.029(0.131) 100.0 0.9

SOS(q = d) 13.6(0.1) 0.428(0.514) 99.9 0.9 15.6(0.1) 0.241(0.475) 100.0 0.1

PLDA(q = K − 1) 50.5(0.4) 0.888(1.186) 86.4 76.5 60.9(0.2) 1.344(0.054) 100.0 100.0

PLDA(q = d) 56.0(0.7) 0.832(1.081) 81.7 70.5 68.2(0.1) 0.899(0.161) 99.0 99.0

Logistic 12.4(0.1) 0.451(0.300) 99.8 0.4 34.5(0.2) 1.138(0.320) 90.0 0.5
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five competitors above are implemented by R packages SPCALDA, msda,

sparseLDA, penalizedLDA and glmnet, respectively. We also include a

simple projection pursuit method (PP) that first project the data onto

Û ∈ Rp×K to reduce the dimension of X from p to K. The linear discrim-

inant analysis is then performed on the K-dimensional reduced predictor.

In addition, we include the Bayes error, i.e., the best possible error rate.

The implementations of SOS and PLDA in R packages provide the option

to pre-specify the number of discriminant directions, denoted by q. We con-

sider both the full rank option (i.e., specifying q = K − 1) and the option

of using the true rank (i.e., specifying q = d).

We compare different methods by several criteria, including the classi-

fication error, the subspace estimation error, the true positive rate (TPR)

and the false positive rate (FPR). The subspace estimation error is mea-

sured by the subspace distance defined in (4.1). With the true active set A

and the estimated active set Â, we obtain the TPR = |Â ∩A|/|A| and the

FPR = |Â ∩ Ac|/|Ac|. We report these comparison criteria over 200 repli-

cates under Models (M1)–(M6) in Table 1. Due to space limit, the results

under model (M7), which is further evaluated under different criteria, and

the estimated ranks from LSLDA and SPCALDA (the only two methods

that are able to select ranks) are provided in the Supplementary Materials.
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Figure 2: The scatterplots of the first two discriminant components β̂>1 X

and β̂>2 X estimated from LSLDA and the first two components estimated

from other competitors. The rank d = 2 is given for SOS and PLDA. The

plots are based on one replicate in Model (M2) and the samples in each

class are represented by different symbols.

Overall, the proposed method significantly outperforms all the other

competitors. It is almost as good as the Bayes rule in classification and

provides the best subspace estimation and variable selection results. The

only exception is in model (M4), where SOS with true rank information

has an edge over LSLDA, which is still significantly better than all other

methods. We note that with the knowledge of true rank d, the results of
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SOS can improve substantially over the standard (full-rank) SOS. Both PP

and SPCALDA fail in all criteria due to the lack of variable selection. Since

PP gives consistently poor performance, we exclude it from all subsequent

simulations. From Table S3 in Supplementary Materials, we also show

that our method can select the rank consistently, while SPCALDA severely

overestimates the rank in most settings.

The classification error of MSDA is usually close to that of our method.

But, MSDA fails to estimate the discriminant subspace accurately and

tends to miss important variables. Logistic regression performs poorly, be-

cause it is expected to lose efficiency comparing to the LDA-based methods.

Comparing models (M1) to (M2), LSLDA and MSDA are more robust to

strong correlation than other methods. For unbalanced data in model (M3),

LSLDA performs well on both majority and minority classes, and the ad-

ditional results are provided in the Supplementary Materials. The results

from Models (M6) and (M7) also confirm the effectiveness of our proposal in

the ordinal classification and the response category combination problems.

For Model (M2), we visualize in Fig. 2 the first two discriminant direc-

tions/components from each method (based on 1/3 of the test data, and

from one replicate). From Fig. 2, the four classes are well separated by our

estimator which is the clear winner in this setting.
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Figure 3: The means of classification error (%) as one of the parameters n,

K, s, p varies. The results are based on 200 replicates in Model (M8). The

rank d = 2 is provided as known for SOS and PLDA. We set (K, s, n, p) =

(4, 20, 120, 500) as default for all simulations except for varying K setting

we have n = 360 and for varying p setting we have n = 240.

We construct another model to study the effects of the sample size

n, the number of classes K, the sparsity level s, and the total number of

predictors p. The covariance matrix Σ and the vectors θk, k = 1, . . . , K−1,
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are given as follows, where we set ‖Σ1/2θ1‖2 and ‖Σ1/2θ2‖2 as fixed in order

to keep a reasonable Bayes error.

(M8) θ1i = w for i = 1, . . . , s, θ2,2j−1 = z and θ2,2j = −z for j =

1, . . . , s/2, where the positive constants w and z are selected such

that ‖Σ1/2θ1‖2 = ‖Σ1/2θ2‖2 = 5. For k = 3, . . . , K − 1, θk =

(k/2− 1)(θ1 + θ2). The covariance matrix Σ has the AR(0.5, p) struc-

ture. The discriminant rank d = 2.

The averaged classification errors over 200 replicates for each method

are displayed in Fig. 3. The SOS and PLDA in the comparison use the true

rank by specifying q = d, which are better than their full rank versions. In

general, LSLDA outperforms all the other competitors. As we increase the

sample size n, all methods except for PLDA and SPCALDA are converging

quickly to the Bayes error. When K increases, the low-rank estimators,

LSLDA and SPCALDA are more robust than others. However, for MSDA,

SOS and Logistic, since more redundant directions are estimated, their

performances are getting worse as K increases. Also, as the sparsity level

s increases, the classification errors of MSDA, SOS and Logistic rise up

rapidly. This might due to the poor variable selection, as seen in Table 1.

When p increases, it is observed that the performances of LSLDA, MSDA,

SOS, and Logistic are not affected remarkably. Thus, our proposed method
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is effective in a wide-range of parameter settings.

In Section S2.2 of Supplementary Materials, we report the computation

time of all the LDA-based methods (LSLDA, SPCALDA, MSDA, SOS, and

PLDA). Result suggests that LSLDA is indeed computationally efficient and

scalable to very high dimensions.

6. Real data analysis

We study three face image data sets face94, face95 and grimace collected

by Spacek (2009). For each subject k, nk = 20 images are taken with

variation of facial expression, position of face in image, head scale and so

on. The task is to classify these images to the corresponding subject. In

face94, we have K = 20 male staffs. In face95, we only use face images

of the first 15 subjects out of the total 72 subjects, so K = 15. Finally,

grimace contains K = 18 subjects. In each data set, greyscale images of

size 180×200 are transformed into a vector of dimension 360, 000. Following

Mai et al. (2019), we perform the F -test variable screening (designed for

multi-category response) on these predictors, and keep p = 500 variables.

To compare our method LSLDA with the same competitors in simula-

tions, each data set is randomly split into training and test sets with a 3 : 1

ratio, and the tuning parameters are selected by five-fold cross validation
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Table 2: The means (and the standard errors) of the classification error (%)

and the estimated sparsity level ŝ over 100 training-test set splits.

LSLDA PP SPCALDA MSDA SOS PLDA Logistic

face94
Err(%) 0.2(0.0) 0.0(0.0) 0.4(0.1) 0.2(0.0) 0.3(0.1) 1.0(0.1) 58.8(0.3)

ŝ 233.2(10.3) 500.0(0.0) 500.0(0.0) 66.5(0.7) 104.5(10.0) 500.0(0.0) 10.9(0.3)

face95
Err(%) 24.5(0.5) 24.6(0.4) 24.7(0.4) 33.6(0.5) 27.5(0.4) 44.1(0.4) 36.5(0.4)

ŝ 227.6(3.4) 500.0(0.0) 500.0(0.0) 24.3(0.4) 326.8(14.4) 500.0(0.0) 24.1(0.3)

grimace
Err(%) 0.0(0.0) 0.0(0.0) 0.1(0.1) 0.0(0.0) 0.1(0.0) 1.1(0.1) 0.5(0.1)

ŝ 241.5(3.1) 500.0(0.0) 500.0(0.0) 76.8(1.2) 130.1(0.6) 500.0(0.0) 23.8(0.3)

on the training set. After the model is refitted with the selected tuning

parameters, the evaluation on the test set is recorded. The averaged clas-

sification error and the estimated sparsity level ŝ over 100 training-test set

splits are recorded in Table 2. From Table 2, we can see that our method

achieves competitive classification accuracy on all data sets. Compared to

PP and SPCALDA, our method produces a sparse estimator. Moreover,

although PP is also highly accurate on the real datasets, it produces a

(K−1)-dimensional reduction of the data, while LSLDA is more aggressive

in achieving low-rank data projection. On the other hand, compared to

other sparse competitors, our estimator makes use of low-rank structure to

attain lower classification error.

The averaged estimated rank d̂ from LSLDA (versus SPCALDA) on
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face94, face95 and grimace are 7.7 (versus 3.6), 9.4 (versus 14.5), and

11.5 (versus 6.3), respectively. The standard errors are all less than 0.5.

Both methods produce low-rank estimator and the advantage of one method

over the other is not clear. We provide the low-dimensional visualization

of the data points using the two methods. In Supplementary Materials, we

show that LSLDA has better visualization and separation of classes than

SPCALDA.

7. Discussion

In this paper, we consider the reduced-rank linear discriminant analysis

model in high dimensions. Motivated from low-dimensional likelihood-

based dimension reduction approach, we propose a doubly penalized convex

optimization and developed a computationally efficient algorithm. Simu-

lations and real data analysis provide two complementary perspectives for

LSLDA. Simulations suggest that the proposed LSLDA method is widely

applicable provided the sample size is not too small (e.g., nk ≥ 10), and

the Bayes classifier is reasonably sparse (e.g, s ≤ 100). We have tested

LSLDA on datasets with dimensions up to 25,000, and the algorithm con-

verges within a reasonable amount of time. The low-rank assumption may

be especially desirable when the number of classes is large, but the advan-
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tage starts to show when K is as small as 4 in the simulations. Thanks to

the synergy between low-rank and sparse inducing penalties, our method

is generally more accurate and robust than existing sparse LDA methods

(such as PLDA and SOS), while the non-sparse projection-based classifi-

cation methods (such as SPCALDA or PP) clearly fail under sparsity as-

sumptions. However, in real data analysis the non-sparse projection-based

methods perform well. LSLDA adapts to these problems by automati-

cally learning a less sparse (ŝ ≥ 200 from p = 500) but low-dimensional

(7 ≤ d̂ ≤ 11 from K = 15) structure from these data sets, and outperforms

most competitors.

Supplementary Materials

Supplementary materials include our alternating direction method of mul-

tipliers algorithm that is compared to the proposed three-operator splitting

algorithm, additional numerical results and technical proofs.
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